
What’s new coming up in
ECMAScript 2022?
Chetan Gawai
Software Engineer @Saeloun

© Chetan Gawai

https://chetangawai.com/

 Chetan Gawai

 Senior Software Engineer @ Saeloun

 JavaScript and ReactJs Enthusiast | Blogger

 Website | Twitter | Linkedin | Github

© Chetan Gawai

https://www.saeloun.com/
https://blog.saeloun.com/authors/chetan
https://chetangawai.com/
https://twitter.com/ChetanGawai1
https://www.linkedin.com/in/chetan-gawai-66a12a17/
https://github.com/chetangawai

Contents

1. Backstory of ECMAScript

2. TC39 process

3. New features coming up in ECMAScript 2022

4. Questions?

© Chetan Gawai

Backstory of ECMAScript
● ECMA International

 Organization dedicated to standardization of information and communication systems

● TC39 committee

Committee at ECMA international which looks into the evolution of JavaScript

● ECMAScript

A set of rules on how a language should work .
These rules are used by browsers to developer their engines.

© Chetan Gawai

The TC39 Process

© Chetan Gawai

https://tc39.es/process-document/

New features coming up in ECMAScript 2022

● Class Fields (Private instance methods and accessors, Class Public Instance Fields & Private Instance Fields,
Static class fields and private static methods)

● Ergonomic brand checks for Private Fields

● Class Static Block

● Top-level await

● RegExp Match Indices

● Object.hasOwn()

● Addition of .at() method in Array, String, TypedArray

● Error Cause © Chetan Gawai

https://github.com/tc39/proposal-class-fields
https://github.com/tc39/proposal-private-fields-in-in
https://github.com/tc39/proposal-class-static-block
https://github.com/tc39/proposal-top-level-await
https://github.com/tc39/proposal-regexp-match-indices
https://github.com/tc39/proposal-accessible-object-hasownproperty
https://github.com/tc39/proposal-relative-indexing-method
https://github.com/tc39/proposal-error-cause

Class field declarations

● Classes were introduced in ECMAScript 2015 using constructor method for initialization

● ECMAScript 2022 adds the new class fields syntax allowing class fields to be initialized on the top

level of class

● Simplifies the class definition making the code look pretty and readable

● Example

© Chetan Gawai

https://github.com/chetangawai/ecmascript_2022_snippets/blob/main/ecmascript_2022_public_instance_fields.jsx

Private instance fields, accessors, methods

● JavaScript lacked making class fields and methods private since inception. Though people followed
convention of using `_` for making the fields and methods private, they were still fully public.

● ECMAScript 2022 introduced prefixing fields, methods, accessors using `#` to make them private.

● Private fields, accessors, methods are not accessible in subclass

● Limitations of private fields:

- Should be declared upfront in the field declaration

- Cannot be deleted

● Example

© Chetan Gawai

https://github.com/chetangawai/ecmascript_2022_snippets/blob/main/ecmascript_2022_private_class_fields.js

Ergonomic brand checks for private fields

● Accessing undeclared public fields => ‘undefined’
Accessing undeclared private fields => throws error

● To check if an object has a private fields, try-catch could be used. Too much to write though😔
● ECMAScript 2022 provides ‘in’ to check if object has private fields/methods

● Some people suggested optional chaining but it does not prevent exceptions

● Example

© Chetan Gawai

https://github.com/chetangawai/ecmascript_2022_snippets/blob/main/ecmascript_2022_brand_check_for_private_fields.js

Static class fields & private static methods

● Useful when a field should exist per class not per instance
Use-cases: Caching, fixed-configuration

● Static public methods were introduced in ES2015

● ECMAScript 2022 adds the remaining
 - Static public fields
 - Static private fields
 - Static private methods

● Example

© Chetan Gawai

https://github.com/chetangawai/ecmascript_2022_snippets/blob/main/ecmascript_2022_static_fields.js

Class static block

● ECMAScript 2022 adds Class static block feature to evaluate static initialization elegantly

● The static block has access to private fields of class

● Example

© Chetan Gawai

https://github.com/chetangawai/ecmascript_2022_snippets/blob/main/ecmascript_2022_class_static_blocks.js

Top-level await
● Top level await enables developers to use await keyword outside async function

● It acts like a async function causing other modules who import them to wait before they start evaluating

● Use-cases

 - Loading modules dynamically
 const strings = await import(`/i18n/${navigator.language}`);

- Resource initialization
 const connection = await dbConnector();

 - Dependency fallback
 let translations;
 try {

 translations = await import('https://app.fr.json');
 } catch {
 translations = await import('https://fallback.en.json');
 }

● Example © Chetan Gawai

https://github.com/chetangawai/ecmascript_2022_snippets/blob/main/ecmascrip_2022_top_level_await.js

RegExp Match Indices

● Regular expression is used for matching text with pattern

● RegExp.exec and String.matchAll return matches and the indices of the match but not end indices

● ECMAScript 2022 adds a new flag ‘/d’ to provide start and end indices of the matched string

● Example

© Chetan Gawai

https://github.com/chetangawai/ecmascript_2022_snippets/blob/main/ecmascript_2022_regex.js

Object.hasOwn(object, property)

● JavaScript has `Object.prototype.hasOwnProperty` to check if object has a particular property.

● But it does not work with all objects - ‘Object.create(null)’

● ECMAScript introduces Object.hasOwn(object, property) to safely check for object properties

● Example

© Chetan Gawai

https://github.com/chetangawai/ecmascript_2022_snippets/blob/main/ecmascript_2022_hasOwn.js

Addition of .at() method in Array, String, TypedArray

● JavaScript is missing the ability to do negative indexing

● ECMAScript 2022 adds `.at(index)` method to access the elements of array from the end by

specifying negative index

● Example

© Chetan Gawai

https://github.com/chetangawai/ecmascript_2022_snippets/blob/main/ecmascript_2022_at_method.js

Error cause

● Error() constructor is used to report errors occurring at runtime

● ECMAScript 2022 provides a ‘cause’ property to be added to the `Error()` constructor allowing

errors to be chained

● Example

© Chetan Gawai

https://github.com/chetangawai/ecmascript_2022_snippets/blob/main/ecmascript_2022_error_cause.js

References

● Code snippets - https://github.com/chetangawai/ecmascript_2022_snippets/

● ECMAScript finished proposals -

https://github.com/tc39/proposals/blob/main/finished-proposals.md

● TC39 process - https://tc39.es/process-document/

© Chetan Gawai

https://github.com/chetangawai/ecmascript_2022_snippets/
https://github.com/tc39/proposals/blob/main/finished-proposals.md
https://tc39.es/process-document/

Questions?

© Chetan Gawai

Thank you!

© Chetan Gawai

https://twitter.com/ChetanGawai1
https://www.linkedin.com/in/chetan-gawai-66a12a17/
https://github.com/chetangawai
https://chetangawai.com/

