What's new coming up in
ECMAScript 20227

Chetan Gawai
Software Engineer @Saeloun

https://chetangawai.com/

Chetan Gawai

Senior Software Engineer @ Saeloun
JavaScript and ReactJs Enthusiast | Blogger
Website | Twitter | Linkedin | Github

© Chetan Gawai

https://www.saeloun.com/
https://blog.saeloun.com/authors/chetan
https://chetangawai.com/
https://twitter.com/ChetanGawai1
https://www.linkedin.com/in/chetan-gawai-66a12a17/
https://github.com/chetangawai

Contents

1. Backstory of ECMAScript
2. TC39 process
3. New features coming up in ECMAScript 2022

4. Questions?

© Chetan Gawai

Backstory of ECMAScript

° ECMA International

Organization dedicated to standardization of information and communication systems

° TC39 committee

Committee at ECMA international which looks into the evolution of JavaScript
e ECMAScript

A set of rules on how a language should work .
These rules are used by browsers to developer their engines.

© Chetan Gawai

The TC39 Process

Stage 2
Draft
Define syntax and
sematics
Stage 1
Examination
Outline the problem |
High level API
Stages of TC39 process
Stage 0
Initial idea
Addition or change to the

specification

Stage 3

Refinement
Ready for feedback &
refinement

Stage 4

Finished
Ready to be a part of
The latest specification

© Chetan Gawai

https://tc39.es/process-document/

New features coming up in ECMAScript 2022

° Class Fields (Private instance methods and accessors, Class Public Instance Fields & Private Instance Fields,
Static class fields and private static methods)

° Ergonomic brand checks for Private Fields

° Class Static Block

° Top-level await

° RegExp Match Indices

° Object.hasOwn()

° Addition of .at() method in Array, String, TypedArray

° Error Cause © Chetan Gawai

https://github.com/tc39/proposal-class-fields
https://github.com/tc39/proposal-private-fields-in-in
https://github.com/tc39/proposal-class-static-block
https://github.com/tc39/proposal-top-level-await
https://github.com/tc39/proposal-regexp-match-indices
https://github.com/tc39/proposal-accessible-object-hasownproperty
https://github.com/tc39/proposal-relative-indexing-method
https://github.com/tc39/proposal-error-cause

Class field declarations

e C(lasseswere introduced in ECMAScript 2015 using constructor method for initialization

e ECMAScript 2022 adds the new class fields syntax allowing class fields to be initialized on the top
level of class

e Simplifies the class definition making the code look pretty and readable

e Example

© Chetan Gawai

https://github.com/chetangawai/ecmascript_2022_snippets/blob/main/ecmascript_2022_public_instance_fields.jsx

Private instance fields, accessors, methods

e JavaScript lacked making class fields and methods private since inception. Though people followed
convention of using *_" for making the fields and methods private, they were still fully public.

e ECMAScript 2022 introduced prefixing fields, methods, accessors using “# to make them private.
e Private fields, accessors, methods are not accessible in subclass
e Limitations of private fields:

- Should be declared upfront in the field declaration

- Cannot be deleted

Example

© Chetan Gawai

https://github.com/chetangawai/ecmascript_2022_snippets/blob/main/ecmascript_2022_private_class_fields.js

Ergonomic brand checks for private fields

e Accessing undeclared public fields => ‘undefined’
Accessing undeclared private fields => throws error

e Tocheckif anobject has a private fields, try-catch could be used. Too much to write though&=
e ECMAScript 2022 provides ‘in’ to check if object has private fields/methods

e Some people suggested optional chaining but it does not prevent exceptions

e Example

© Chetan Gawai

https://github.com/chetangawai/ecmascript_2022_snippets/blob/main/ecmascript_2022_brand_check_for_private_fields.js

Static class fields & private static methods

e Useful when a field should exist per class not per instance
Use-cases: Caching, fixed-configuration

e Static public methods were introduced in ES2015
e ECMAScript 2022 adds the remaining
- Static public fields

- Static private fields
- Static private methods

e Example

© Chetan Gawai

https://github.com/chetangawai/ecmascript_2022_snippets/blob/main/ecmascript_2022_static_fields.js

Class static block

e ECMAScript 2022 adds Class static block feature to evaluate static initialization elegantly

e Thestaticblock has access to private fields of class

e Example

© Chetan Gawai

https://github.com/chetangawai/ecmascript_2022_snippets/blob/main/ecmascript_2022_class_static_blocks.js

Top-level await

Top level await enables developers to use await keyword outside async function
It acts like a async function causing other modules who import them to wait before they start evaluating

Use-cases

- Loading modules dynamically
const strings = await import(/il8n/${navigator.language}) ;

- Resource initialization
const connection = await dbConnector();

- Dependency fallback
let translations;

try {
translations = await import ('https://app.fr.json');
} catch {
translations = await import ('https://fallback.en.json');

}

Example

© Chetan Gawai

https://github.com/chetangawai/ecmascript_2022_snippets/blob/main/ecmascrip_2022_top_level_await.js

RegExp Match Indices

Regular expression is used for matching text with pattern

RegExp.exec and String.matchAll return matches and the indices of the match but not end indices

ECMAScript 2022 adds a new flag /d’ to provide start and end indices of the matched string

Example

© Chetan Gawai

https://github.com/chetangawai/ecmascript_2022_snippets/blob/main/ecmascript_2022_regex.js

Object.hasOwn(object, property)

e JavaScript has "Object.prototype.hasOwnProperty’ to check if object has a particular property.
e Butitdoes not work with all objects - ‘Object.create(null)’
e ECMAScript introduces Object.hasOwn(object, property) to safely check for object properties

e Example

© Chetan Gawai

https://github.com/chetangawai/ecmascript_2022_snippets/blob/main/ecmascript_2022_hasOwn.js

Addition of .at() method in Array, String, TypedArray

e JavaScript is missing the ability to do negative indexing

e ECMAScript 2022 adds ".at(index)” method to access the elements of array from the end by
specifying negative index

e Example

© Chetan Gawai

https://github.com/chetangawai/ecmascript_2022_snippets/blob/main/ecmascript_2022_at_method.js

Error cause

e Error() constructor is used to report errors occurring at runtime

e ECMAScript 2022 provides a ‘cause’ property to be added to the "Error()" constructor allowing
errors to be chained

e Example

© Chetan Gawai

https://github.com/chetangawai/ecmascript_2022_snippets/blob/main/ecmascript_2022_error_cause.js

References

e Code snippets - https://github.com/chetangawai/ecmascript 2022 snippets/

e ECMAScript finished proposals -
https://github.com/tc39/proposals/blob/main/finished-proposals.md

e TC39 process - https://tc39.es/process-document/

© Chetan Gawai

https://github.com/chetangawai/ecmascript_2022_snippets/
https://github.com/tc39/proposals/blob/main/finished-proposals.md
https://tc39.es/process-document/

Questions?

.
L

© Chetan Gawai

Thank you!

VENinENvIN

https://twitter.com/ChetanGawai1
https://www.linkedin.com/in/chetan-gawai-66a12a17/
https://github.com/chetangawai
https://chetangawai.com/

